Improved Whale Optimization Algorithm for Solving Constrained Optimization Problems
نویسندگان
چکیده
In view of the shortcomings whale optimization algorithm (WOA), such as slow convergence speed, low accuracy, and easy to fall into local optimum, an improved (IWOA) is proposed. First, standard WOA from three aspects initial population, factor, mutation operation. At same time, Gaussian introduced. Then nonfixed penalty function method used transform constrained problem unconstrained problem. Finally, 13 benchmark problems were test feasibility effectiveness proposed method. Numerical results show that IWOA has obvious advantages stronger global search ability, better stability, faster higher accuracy; it can be effectively solve complex problems.
منابع مشابه
FOA: ‘Following’ Optimization Algorithm for solving Power engineering optimization problems
These days randomized-based population optimization algorithms are in wide use in different branches of science such as bioinformatics, chemical physics andpower engineering. An important group of these algorithms is inspired by physical processes or entities’ behavior. A new approach of applying optimization-based social relationships among the members of a community is investigated in this pa...
متن کاملA New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems
Global optimization methods play an important role to solve many real-world problems. Flower pollination algorithm (FP) is a new nature-inspired algorithm, based on the characteristics of flowering plants. In this paper, a new hybrid optimization method called hybrid flower pollination algorithm (FPPSO) is proposed. The method combines the standard flower pollination algorithm (FP) with the par...
متن کاملEFFICIENCY OF IMPROVED HARMONY SEARCH ALGORITHM FOR SOLVING ENGINEERING OPTIMIZATION PROBLEMS
Many optimization techniques have been proposed since the inception of engineering optimization in 1960s. Traditional mathematical modeling-based approaches are incompetent to solve the engineering optimization problems, as these problems have complex system that involves large number of design variables as well as equality or inequality constraints. In order to overcome the various difficultie...
متن کاملAn Improved Bat Algorithm with Grey Wolf Optimizer for Solving Continuous Optimization Problems
Metaheuristic algorithms are used to solve NP-hard optimization problems. These algorithms have two main components, i.e. exploration and exploitation, and try to strike a balance between exploration and exploitation to achieve the best possible near-optimal solution. The bat algorithm is one of the metaheuristic algorithms with poor exploration and exploitation. In this paper, exploration and ...
متن کاملOpenMP Dual Population Genetic Algorithm for Solving Constrained Optimization Problems
Dual Population Genetic Algorithm is an effective optimization algorithm that provides additional diversity to the main population. It deals with the premature convergence problem as well as the diversity problem associated with Genetic Algorithm. But dual population introduces additional search space that increases time required to find an optimal solution. This large scale search space proble...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Dynamics in Nature and Society
سال: 2021
ISSN: ['1607-887X', '1026-0226']
DOI: https://doi.org/10.1155/2021/8832251